

VALENCIA 2009 TRIBUNAL V4 EJERCICIO 1

Sea la familia de elipses con focos en el eje X, semieje de ordenadas 2 y semieje de abscisas λ . Dado el punto (-6, m), hallar el lugar geométrico de los puntos de contacto entre las rectas tangentes a las elipses que pasan por el punto dado, y las elipses. Realiza un estudio de la solución en función de m.

SOLUCIÓN.

El lugar geométrico que nos piden está formado por dos puntos de la elipse, puesto que desde un punto exterior a una elipse solo se pueden trazar dos tangentes, y solo habrá dos puntos de contacto. En consecuencia, debemos entender que λ es un parámetro, es decir, tenemos una familia de elipses que nos proporcionarán un lugar geométrico al variar λ . Por supuesto, como ya hemos observado, el punto (-6, m) deberá ser exterior a la elipse.

La ecuación de la elipse será
$$\frac{x^2}{\lambda^2} + \frac{y^2}{4} = 1 \Leftrightarrow 4x^2 + \lambda^2 y^2 = 4\lambda^2$$

Si derivamos respecto de x, obtenemos $8x + 2\lambda^2 y \cdot y' = 0 \Leftrightarrow y' = \frac{-4x}{\lambda^2 y}$

La ecuación de la recta tangente en un punto (x_0, y_0) será: $y - y_0 = \frac{-4x_0}{\lambda^2 y_0} (x - x_0)$

Como la recta pasa por el punto (-6, m), sustituimos en la ecuación de la misma:

$$m - y_0 = \frac{-4x_0}{\lambda^2 y_0} (-6 - x_0) \Leftrightarrow m - y_0 = \frac{4x_0}{\lambda^2 y_0} (6 + x_0)$$

Nuestro lugar geométrico es, precisamente, el punto (x_0, y_0) , que verifica esta última ecuación, y también la ecuación de la elipse. En consecuencia, si usando ambas ecuaciones eliminamos el parámetro λ , tendremos la ecuación implícita del lugar que nos piden.

Nada más fácil: despejamos λ^2 de la última ecuación, $\lambda^2 = \frac{4x_0(6+x_0)}{y_0(m-y_0)}$, y sustituimos en la de la elipse, eliminando ya todos los "sub cero":

$$4x^{2} + \frac{4x(6+x)}{y(m-y)}y^{2} = 16\frac{x(6+x)}{y(m-y)} \Leftrightarrow 4x^{2}y(m-y) + 4x(6+x)y^{2} = 16x(6+x)$$

Podemos dividir por 4x, suponiendo x no nulo, y obtenemos

Academia ADOS

VALENCIA 2009 TRIBUNAL V4 EJERCICIO 1

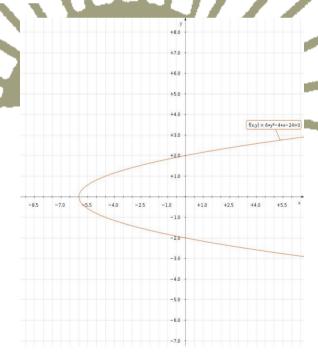
$$xy(m-y)+(6+x)y^2 = 4(6+x) \Leftrightarrow x(my-y^2+y^2-4) = -6y^2+24 \Leftrightarrow x = \frac{-6y^2+24}{my-4}$$

Operando, obtenemos $mxy - 4x = -6y^2 + 24 \Leftrightarrow 6y^2 + mxy - 4x - 24 = 0$, que es la ecuación de una cónica, por ser un polinomio de segundo grado en dos variables.

La matriz de la cónica será $\begin{pmatrix} -24 & -2 & 0 \\ -2 & 0 & \frac{m}{2} \\ 0 & \frac{m}{2} & 6 \end{pmatrix}$, por lo que $A_{00} = \frac{-m^2}{4}$ y $|A| = -24 + 6m^2$. Esto significa

que:

1. Si m = 0, $A_{00} = 0y|A| \neq 0$, luego la cónica es una parábola.



2. Si m = ± 2 , $A_{00} < 0$ y|A| = 0, luego es una hipérbola degenerada en dos rectas secantes.

3. En

otro

caso,

VALENCIA 2009 TRIBUNAL V4 EJERCICIO 1

 $A_{00} < 0$ y $|A| \neq 0$, luego es una hipérbola.

